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Abstract, Exact implicit selutiops with functional parameters of the (2 + I)-dimensional Harry
Dym (31D equation are constructed by the E-dressing method. The mterrelation between the
Hp and modified Kadomtsev—~Petviashvili (mKp) equahions is established within the framework
of the J-dressing method. Knowledge of the mkp eigenfunctions allows the solutions of the
(2 + 1)-dimensional HD equation to be represented in a simple parametric form.

1. Introduction

The Harry Dym (HD) equation u, - t’,,, = O is one of the most interesting and exotic
soliton equations (see e.g. [1-6]). It was discovered in an unpublished paper by Harry Dym
(see [1]} and rediscovered in more general form in {2] within the classical string problem.
The (1 1)-dimensional HD equation possesses many properties which are typical of soliton
equations (see e.2. [3,4] and references therein). The inverse spectral transform method
was applied to the HD equation in [5]. On the other hand, the HD equation has successfully
resisted all attempts to construct its solutions in explicit form (see the review in [4]). The
cusp solitons constructed in [5] are given by implicit formulae and can only be analysed
numerically. The reciprocal link between the HD and Kdv equations also provides implicit
solutions since it includes a simultaneous change in both the dependent and independent
variables [3,4]. In the best case the necessity to invert the reciprocal transformation remains,
so implicit solutions is a characteristic feature of the HD equation. The HD equation on the
complex plane also arises in some physical problems such as string theory and the Saffman—
Taylor and Hele—Shaw problems {2,7-11].

The (2 + 1)-dimensional integrable generalization of the HD equation was proposed ten
years ago in [12]. The whole infinite hierarchy of integrable equations (the 2DHD hierarchy)
is associated with the 2DHD equation [13]. This hierarchy is the non-standard (r = 2)
hierarchy within the Sato approach [13]. Similar to the (1 + 1)-dimensional case the 2DHD
equation is connected to the modified Kadantsev-Petvashvili (mkP) and KP equations [14].
This connection is valid for ali corresponding hierarchies [13]. In [15] some interesting
reciprocal transformations were also presented.

In the present paper we consider the (2 4+ l)-dimensional HD equation within the
framework of the 8-dressing method. The 9-dressing method is a very strong and effective
method to construct and simultanecusty solve nonlinear partial differential equations [16-
19] (see also [20]). In the HD case the 3-dressing method provides an infinite class of
implicit exact solutions with functional parameters which correspond to generic degenerate
J data.
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A comparison between the 3-dressing for the 2DHD and mKP equations gives rise to a
simple interrelation between the corresponding wavefunctions. This interrelation provides
a simple and convenient parametric form for the exact solutions of the 2DHDP equation.

2. B-dressing for the (2 -+ 1)-dimensional HD equation

The (2 + 1)-dimensional HD equation is of the form [12]
3 e
o g+ = (420577 (u—;))y = 0. o0
It is equivalent to the compatibility condition for the linear system {12]
U, 4w, =0
iy

W, + 4uP W,y + 60 (u — 37! (;)) ¥, =0, 2)

The 9-dressing method [16-20] starts with the non-local 8 problem

Bx (L, 1)
ax

= (R*x) (x,I):fdey A (M, ARA A ALY (3)

where x and R are scalar functions. It is assumed that the 3 equation is uniquely sofvable
and the function y is normalized canonically, i.e. x — 1 as A — oo. The applicability of
the 3-dressing method to the 2DHD equation (1) has been demonstrated in [20]. We will use
the observation made in {20] to present here the complete 9-dressing scheme for the 2DHD
equation.

First we introduce the dependence on the variables x, y, ¢ into the ) problem. It is fixed
by the conditions

[Dy, RI=1[D,, Ry =D, R1=10 )
where operators D, D, D, are of the form

i i i 4 i
De=28+7/ Dy=dy+ 5+ Dr=dt3+3h O

and f(x, v, 1) is a scalar real function. By virtue of (4) and (5) we have
RO T MK %, 3,0) = RoO, W 4, Dexp (FIV, 1) — F(L, 1) (6)
where Ry is an arbitrary function and
i I 4i
F(A,r):If-I'FJi'FIg!. (7)

According to the general approach (see e.g. [20]) one should construct the operators of
the form

L= tunm(x,y,1)DID, D] ®)

ntm
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which obey the following conditions
a
[3—1_’ L:| x=0 and {(Lx)YA)—=0 as A — 0Q. (9)

For such operators L; one has
Linear equations (10} are the desired linear problems which give rise to nonlinear integrable
systems [16-20].

It is not difficult to show that, in our case, one can construct the two independent
operators which obey conditions (9). They are

Ly =Dy, +u*D;

(11}
Ly =D, + 4 D} + 61 (u, — 3 (%)) D?
where ™~
u=1/f. (12)
So linear problems (10) are of the form
Dyx +u’Dlx =0 (13)
71
Dix +4u’ D3y + 6u? (ux -8 (;—321)) DIy =0 (14)
One obtains linear problems (2) in terms of the function ¥ defined by
i | 4i
W:xexp(1f+§y+ﬁr). (15)
By virtue of equations (13) and (14) the function f(x, y.¢) obeys the equations
Jax 2xox
H+ =+ = (16)
’ fxz Xﬂfx
9 02 -1 2 1
fi= 3243 Gy = =5 | = ) =0 (17)
X x X

where x¢ 1= x{A = 0,x, y,t). It is straightforward to check that if the function f obeys
equation (17) then function z = f;! solves HD equation (1).

Function f{x, y,t) and equations (16) and (17} play a fundamental role in the theory
of the 2DHD equation.
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3. Exact solutions

To construct the exact solutions of equation (17) and, hence, those of the 2DHD equation
(1) one has to find the exact solutions of the 8 problem (3). As usual (scc e.g, [20]) they
correspond to the degenerate data R:

N
Ro\ Wi 0, By =7 Y filW, W)g(h, 2) (18)
k=1

where f, and g; are arbitrary functions; these functions for real u{x, y, t} (0r equivalently
for real f(x,y, 1)) satisfy the conditions

Je(, 2) = fil=k, =1 & (A2 = gr(=%, =),

For such Ry the integral equation which is equivalent to (3) can be solved explicitly. One
obtains

- dr A dN gy (M, MDe=FR)
XD =14x Dmthyn [ [ SASEESS (19)

where
m(s.30 = [ [ @AdTx0DAR D,
c
Alfter some calculations one obtains

xo=1+33 alf, >, A Nupi(f, y, 1) = det (ﬁA") (20)
k

where the matrices Ay and Ay have the form

A = 8y — 507 (geprs) A =8y + 337 ar.r i)

and

AARA - - —
e :=ff d : gr(h, e~ FW pr = —iffd;md). felh, M)eF P,
< c

In the last formulae g; ; and py s are partial derivatives of the function f(x,y,t):

_ Ogq __ b
qf = F by = ?

Due to the reality of u(x, y. D@ =q. Br=m (I=1,..., N).

So the exact solutions of equation (17) are presented by equation (16) where xqg is
given by (20). This is a partial differential equation and, hence, the function f is defined
implicitly. In the simplest case of one term in the sum (18) equation (16} looks like

£+ Jor | Pq.s L P.r4

- - =0. (21)
21+ pgy)  1—387 e )

The symbol BJT' in the above formulae by definition means the appropriately chosen inverse
to the 8y integral operator: 979, =1
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4. The interrelation between the HD and mKP equations
The construction of the exact solutions of the HD equation is simplified greatly if one uses
the connection between the HD and mKP equations. This connection is a well known fact
[14,15]. Here we will describe it within the framework of the 5-dressing method. The mKp
equation is of the form [12]

Vit Vegs — 3V2V: 4+ 387V, — 3128V, = 0. (22)
It arises as the compatibility condition for the following linear problems [12]

L 4 FE 23)

KP KP KP -1 3 172y kP
WP 4 AW +6VWLT 4+ (3Ve =387V, + 5 VHUPY =0. (24)

The mKP equation can be derived and solved by the 3-dressing method [21]. The
corresponding £, v, ¢ dependence of the & data R™F is of the form

RO T AR E, v, ) = REFPOU, W5 0, Ry exp(FTF() — FPRPGL) (25)
where
mKP i 1 4
= — — —1. 2
FR0) = 26+ 55y + 5t (26)

Let us now compare the 3 equations for the mKkp and HD equations. It is not difficult
to see that the mKP wavefunction x™=F(£, y, 1) after the change £ — f(x, y, t) obeys the
same 3 equation as the xHP(x, y, ) (compare formulae (25)—~(26) and (6)~(7)). Thus by
virtue of the unique solvability of the 3 problems one obtains

MG, y, 0 = x™F(f(x, y, 1), 3, 0). (27)

This equality presents the desired interrelation between the HD and mKP equations. So the
transformation of the independent variables in this interrelation is given by

§=fx1 y—=>y r—t, (28)

Relation (28) implies that
x=®(@E,y.1). (29)
Using standard formulae for changes in independent and dependent variables {(see e.g.

[22,4]), it is not diificult to show that, under the change (28} and (29), equations (16) and
(17} are converted into the following

D, + 4Dy + 6V + (3V; — 337V, + VP =0 (30)
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where

VE, ¥, 1) = —2x0: /X0 3D

which is just the mKP linear problems (23)—(24).

Thus function @ in the change {29) is nothing other than mkp wavefunction
PmKPee y, 1), This fact is of major importance. Note that the connection between the mkp
and HD equations via the change (29) where ¢ is the mKP wavefunction was first established
in [14] using a compietely different approach. Using this observation one obtains from (12)
the following representation for the solutions of the HD equation:

ulx, y, 1) = W™ jag (32)
x =" 5 . (33)

So for the known mKP wavefunction ™% formulae (32) and (33) give a parametric
form for the solutions of the HD equation. In most cases one cannot express & via x, y, ¢
from (33) explicitly. Thus we have implicit solutions for the 2DHD equation (1).

Formulae (32) and (33) can be represented in different but equivalent forms. First, by
substituting (28) into {33), we obtain

x =" P(flx, 3,0, 3. 1). (34)

Given W™ it is the functional equation for the function f(x, y,1). It is quite obvious
that this functional equation is equivalent to differential equation (16). Hence, knowledge
of the mKp wavefunctions allows us to reduce the problem of constructing the solutions of
equation {16) and, consequently, of the 2DHD equation (1), to solving the purely functional
equation (34).

Second, by substituting (33) into (32), one obtains

w(UPE 1), 3, 1) = 9W™F gk (35)

For a given solution u of the 2DHD ecquation it is the differential equation for the
wRP(E, y, 1)

Both equations (34) and (35) can be used to solve the 2DHD equation. From a
practical point of view the parametric representation seems more convenient. Note that
the representation {32) and (33} has been considered within a different approach in [15].

5. Exact solutions via mKP wavefunctions

The mKP equation has been studied in detail in [21] (see also [20]). A number of different
classes of solution have been constructed. Here we will only use the simplest one.

The most general exact solutions of the mKp equation correspond to the kernel RT™P of
the form

N
RPPQL L) =1y Al W) g(h R (36)
k=1
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where f; and g are arbitrary functions; these functions for the real V(£, v, 1) satisfy the
conditions [22]

frld X)) = fil=X, =1), ge(h, &) = ge(—A, =A).

The corresponding wavefunction W™ looks like [20,21]

di" A dA7 g (A, Aye=FD
— o FO)
Woy =e (1+n;hk@,y,r)ffc o ) @

where
hy(E,y,1) = f f dA AL x (A, ) fi(x, Def®
Loy

and
iy 4t
FA)= =+ <54+ —.
M=—+5+5
Using (37) via (32) and (33), one obtains & very general class of exact solutions of the
2DHD equation.
Particular choices for the functions jf;, and g; give rise to particular specialized solutions

of the mKP equation and, consequently, of the 2DHD equation,
First, let us choose

N
R&FQV, 0y = -’25 DS — i) — 1B (38)
k=1

where o, fr and S, are arbitrary real constants and o = 8. The comresponding
wavefunction (L) is of the form [20,21]

ZN: Sy exp(F (i) — F (i)

Y(r) = m)(l
(A)=e + By -+ 1A

(A"nm) (29)

k,m=1
where

Sy exp(F(ioy) — F(i8e))
+ .
o — B

Amp = 8gm (40}

For any pure imaginary A such that A # 18, (k = 1...., N} formula (39) provides, via (32}
and (33). exact real solutions of the 2DHD equation. In the simplest case, N = 1, one has

(=01, =61
x {1 I x {1 1
> 2+3)-35)

u(x, y, 1) =~
g/ 1 y 1 1 1 1
“a“h[i(é_?)"i(ﬁ“ﬁ)_z‘(@_Eﬁ)”]

1 1 1 1
@725 “
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where the parameters 8, o and 8 are choosen so that
B S/ —B) = 0.

In particular if & = —§ formulae (41} give

1/2
ulx, v, 1) = “2 (1 — x2exp (%)) ) (42)

It should be emphasized that formula (42) gives us the explicit (but stationary) solution of
the 2DHD equation.

The 3 data RmKP of the form (38) but with g, = o, (k = 1,..., N) generatc the plane
rational solutions of the mkP equation [20,21]. The corresponding wavefunction is

N
woRPGL €,y t =e*°<”(1+ A~ m) 43
M€y, kzlkm( ) (43)
where
2y 12 o2
Amk=( ——’——2+ym)akm— T (1 = Gim). (44)
[+ o Oty — O

So for any pure imaginary A such that A 5 i@, (k = 1,..., N) expression (43) provides
us, via (32) and (33), with the real exact solutions of the 2DHD equation. In particular, at
= | one has

2y 12t
= (5)-x/[-2 -G +3]
_ & y 4 2y 12t «
x‘“"(&‘@'?)/[ ‘E“‘§+§] (45)

Finally let us consider the kernel R{,“Kp which is more general than (38) and which
corresponds to rational solutions of MKP equation, This kernel has the form [21]

N
ROKPOU T 0, E) = =5 [ 860, M8 — M)S( = Ay
0 2
k=1

+ SH=, RO + TS+ 3 (46)

where A, are arbitrary complex constants and S;(A’, A} are arbitrary complex functions. The
corresponding real wavefunction of mKP equation in the simplest case of one term in the
sum (46) may be choosen, for example, in the form

WA E, y, ) =Py () +ef Py (=) 47

with

18 i§
FO=t+54T  md )= o) - g xR
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where § and A, are arbitrary complex parameters and

Xy 4 ik /AR

X}y =x(-x) =
X, X — 1A}/ (4A2,)
2i 12¢ ,
XA.=5”‘_}:+_2‘+VM A= g +iky.
Ao A2

In the Tast formula y,, = ¥_3; by definition.

Let us note that the choice of wavefunction in the form (47) is possible because
the equation for the function y = e MW for the real V(£, y,t) due to (23) admits the
involution x(—A) = x (). For any complex A such that A # Aj, A # —A; formula (47)
provides, via (32) and (33), the exact real solution of the 2DHD equation.

In a similar manper one can find the exact solutions of the 2DHD equation in parametrized
form which are associated with breather-type and other solutions of the mKP equation
[20,21].

quKP

6. Conclusion

The results obtained in this paper can be easily extended to the whole 2DHD hierarchy. The
2DHD hierarchy can be constructed by 8-dressing via & problem (3) with 3 data (16) with

. 201
Fhl&l‘ == Z ka (48)

k=1

where x; == x, X2 = vy, .... Formula {16) is valid for the whole hierarchy together with the
higher analogues of equation (17). Equation (21) is also true for all the hierarchy.

Finally the interrelation between the 2DHD hjerarchy and the mKP hierarchy is given by
the formulae (27)-(29). The analogue of the formulae (32) and (33) for the whole hierarchy
looks like

(X1, ..o, Xg) = BWTEF /35,

)C[=‘Ime'P(§1,§2,...) x;;=£;,, k=2,3,...
where W™K® is the common wavefunction for the whole mKP hierarchy and &, &, ... are
independent variables for the mKP hierarchy.

In a similar manner one can analyse the (! + 1)-dimensional HD equation and its
connection with the mKdv equation within the framework of the 9-dressing method.
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