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Abstract. Exact implicit solutions with functional parameters of the (2 t I)-dimensional Harry 
Dym (HD) equation are constructed by the 7-dressing method. The intemlotion between the 
HD and modified Kadomtsev-Pewixshwli (mKP) equations is established within the framework 
of the 7-dressing method. Knowledge of the n m  eigenfunctions allows the solutions of the 
(2 + I)-dimensional HD equation to be represented in n simple parametric form. 

1. Introduction 

The Harry Dym (HD) equation ut + u3uxxx = 0 is one of the most interesting and exotic 
soliton equations (see e.g. [1-6]). It was discovered in an unpublished paper by Harry Dym 
(see [l]) and rediscovered in more general form in [2] within the classical string problem. 
The (1 + I)-dimensional HD equation possesses many properties which are typical of soliton 
equations (see e.g. [3,4] and references therein). The inverse spectral transform method 
was applied to the HD equation in [ 5 ] .  On the other hand. the HD equation has successfully 
resisted all attempts to construct its solutions in explicit form (see the review in [4]). The 
cusp solitons constructed in [5] are given by implicit formulae and can only be analysed 
numerically. The reciprocal link between the HD and KdV equations also provides implicit 
solutions since it includes a simultaneous change in both the dependent and independent 
variables [3,4]. In the best case the necessity to invert the reciprocal transformation remains, 
so implicit solutions is a characteristic feature of the HD equation. The HD equation on the 
complex plane also arises in some physical problems such as string theory and the Saffman- 
Taylor and Hele-Shaw problems [2,7-11] 

The (2 + 1)-dimensional integrable generalization of the m equation was proposed ten 
years ago in [IZ]. The whole infinite hierarchy of integrable equations (the ?DHD hierarchy) 
is associated with the ZDHD equation [13]. This hierarchy is the non-standard (r = 2) 
hierarchy within the Sat0 approach [13]. Similar to the (1 + I)-dimensional case the ? D m  
equation is connected to the modified Kadantsev-Petvashvili (mKP) and KP equations [14]. 
This connection is valid for all corresponding hierarchies [15]. In [I51 some interesting 
reciprocal transformations were also presented. 

In the present paper we consider the ( 2  + 1)-dimensional HD equation within the 
framework of the %dressing method. The %dressing method is a very strong and effective 
method to construct and simultaneously solve nonlinear partial differential equations [ 16- 
191 (see also [ZO]). In the HD case the &kessing method provides an infinite class of 
implicit exact solutions with functional parameters which correspond to generic degenerate 
a data. 
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A comparison between the %ressing for the ZDHD and mKP equations gives rise to a 
simple interrelation between the corresponding wavefunctions. This interrelation provides 
a simple and convenient parametric form for the exact solutions of the ZDHD equation. 

2 &dressing for the (2 + l)-dimensional BD equatioo 

The (2+ 1)-dimensional HD equation is of the form [I21 

It is equivalent to the compatibility condition for the linear system [ 121 

The %dressing method [ 16-20] starts with the non-local 3 problem 

- = (" x )  @ , I )  = / /  dh' A d F x ( A ' , h ' ) R ( A ' , ~ ;  A , x )  (3) 
ah C 

where ,y and R are scalar functions. It is assumed that the 3 equation is uniqucly solvable 
and the function x is normalized canonically, i.e. x + 1 as A + 00. The applicability of 
the %dressing method to the ZDHD equation (1) has been demonstrated in [ZO]. We will use 
the observation made in [ZO] to present here the complete %dressing scheme for the ZDHD 
equation. 

First we introduce the dependence on the variables x ,  y, t into the 2 problem. It is fixed 
by the conditions 

[Ox, RI = [Dyr 81 = [D,, 21 = 0 (4) 

where operators D,, D,, D, are of the form 

1 i i  4i i 
A h  h 

D, = a,+ + D, = a, + -i + -fi (5) D, =a, + -fz 
and f ( x ,  y, f) is a scalar real function. By virtue of (4) and (5) we have 

R ( A ' , T ; A . I ; x , y , t )  = R ~ ( h ' , ~ ; h , j ; ) e x p ( F ( A ' , r )  - F ( A , r ) )  (6) 

where Ra is an arbitimy function and 

I 1 4i 
A AZ A3 ' 

F ( A , t )  = - f + - y +  --t (7) 

According to the general approach (see e.g. [ZO]) one should construct the operators of 
the form 
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which obey the following conditions 
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For such operators Li one has 

Linear equations (10) are the desired linear problems which give rise to nonlinear integrable 
systems [l&20]. 

It is not difficult to show that, in our case, one can construct the two independent 
operators which obey conditions (9). They are 

Li = D, + u2D: 

L2 = D, + 4u3 0;’ + 6u2 (U. - 8;’ (?)) D: 

U = I / f x .  

So linear problems (10) are of the form 

D,x + u2D:x = 0 

DIX + 4u3 D:x + 6u2 (uX - a;’ (5)) D:x = 0. 
U 

One obtains linear problems (2) in terms of the function defined by 

By virtue of equations (13) and (14) the function f (x, y .  t )  obeys the equations 

where xo := ~ ( h  = 0, x ,  y ,  t ) .  It is straightforward to check that if the function f obeys 
equation (17) then function U = f ; ]  solves HD equation (1). 

Function f ( x ,  y .  t )  and equations (16) and (17) play a fundamental role in the theory 
of the ZDHD equation. 
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3. Exact solutions 

To construct the exact solutions of equation (17) and, hence, those of the ?DHD equation 
(1) one has to find the exact solutions of the 3 problem (3). As usual (see e.g. [20]) they 
correspond to the degenerate data R: 

V G Dubrovsb and B G Konopelchenko 

where fk and gk are arbitrary functions: these functions for real u f x ,  y. t )  (or equivalently 
for real f ( x ,  y. t ) )  satisfy the conditions 

For such Ro the integral equation which is equivalent to (3) can be solved explicitly. One 
obtains 

where 

In the last formulae qr.1 and pi . /  are partial derivatives of the function f ( x .  y, t ) :  

Due to the reality of u ( x ,  y ,  t )  
So the exact solutions of equation (17) are presented by equation (16) where xo is 

given by (20). This is a partial differential equation and, hence, the function f is defined 
implicitly. In the simplest case of one term in the sum (18) equation (16) looks like 

= q,, E = p~ ( I  = 1,. . , , N). 

The symbol 8;’ in the above forniulae by definition means the appropriately chosen inverse 
to the a, integral operator: a,a;l = 1. 
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4. The interrelation between the HD and  mKP equations 

The construction of the exact solutions of the HD equation is simplified greatly if one uses 
the connection between the HD and mKP equations. This connection is a well known fact 
[14, 151. Here we will describe it within the framework of the %dressing method. The mKP 
equation is of the form [I21 

v,+vtaa - ; v 2 v ~ + 3 a ; 1 v y y - 3 ~ a ~ ' v y = o .  (22) 

It arises as the compatibility condition for the following linear problems [I21 

W K P  Y + YC"cP + V y K P  = 0 (23) 

qyKP t 4q$' t 6v~;2.p + (31+ - 3a;]v, + ; v Z ) q K P  = 0. (24) 

The ~ K P  equation can be derived and solved by the %dressing method [21]. The 
corresponding 6 ,  y ,  t dependence of the 3 data Rmw is of the form 

RmKP(h', F;  A, r; 6, y ,  t) = Rrw(h', F ;  h,  X) exp(FmKP(h') - Fmw(h))  (2.5) 

where 

i 1 4i 
h hZ 

F"KP(h) = -5 + - y +  sf. 

Let us now compare the 3 equations for the mm and HD equations. It is not difficult 
to see that the ~ K P  wavefunction x-Q, y ,  t )  after the change 6 + f ( x ,  y, t) obeys the 
same 3 equation as the xHD(x, y. t) (compare formulae (25)-(26) and (6)-(7)). Thus by 
virtue of the unique solvability of the 3 problems one obtains 

X%, Y .  f )  = X"KpV(X, Y .  f ) , Y , f ) .  (27) 

This equality presents the desired interrelation between the HD and mKP equations. So the 
transformation of the independent variables in this interrelation is given by 

< = f ( x , y , O  Y + Y  f + t .  (28) 

Relation (28) implies that 

x = w, Y .  t ) .  (29) 

Using standard formulae for changes in independent and dependent variables (see e.g. 
[22,4]), it is not difficult to show that, under the change (28) and (29), equations (16) and 
(17) are converted into the following 

9, + a(< + V(F, Y .  f ) * <  = 0 

a, + 4 a F F F  + 6voaa + (3vF - 3a;'vy + = o (30) 
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where 
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V(C.y , t )  = -2xo{fxo (31) 

which is just the mKP linear problems (23)-(24). 
Thus function @ in the change (29) is nothing other than ~ K P  wavefunction 

QmKp(t. y .  t). This fact is of major importance. Note that the connection between the mm 
and HD equations via the change (29) where Q, is the mKP wavefunction was first established 
in [ 141 using a completely different approach. Using this observation one obtains from (12) 
the following representation for the solutions of the m equation: 

U ( X .  y ,  t) = aq-fat 

x = W"'W(t, y .  t ) .  

(32) 

(33) 

So for the known m u  wavefunction Q- formulae (32) and (33) give a parametric 
via x .  y ,  I 

Formulae (32) and (33) can be represented in different but equivalent forms. First, by 

form for the solutions of the HD equation. In most cases one cannot express 
from (33) explicitly. Thus we have implicit solutions for the 2DHD equation (1). 

substituting (28)  into (33), we obtain 

x = Q (34) mKF Y ,  0 ,  Y. ' ) .  

Given Q- i t  is the functional equation for the function f ( x .  y ,  t), It is quite obvious 
that this functional equation is equivalent to differential equation (16). Hence, knowledge 
of the mKp wavefunctions allows us to reduce the problem of constructing the solutions of 
equation (16) and, consequently, of the 2DHD equation (I). to solving the purely functional 
equation (34). 

Second, by substituting (33) into (32), one obtains 

~ ( w ~ ~ ~ g ,  y ,  1). y ,  t )  = awmW/aC. (35) 

For a given solution U of the ZDHD equation it is the differential equation for the 

From a 
practical point of view the pwametric representation seems more convenient. Note that 
the representation (32) and (33) has been considered within a different approach in [ 151. 

* m K P ( B ,  Y ,  1 ) .  
Both equations (34) and (35) can be used to solve the ZDHD equation. 

5. Exact solutions via mlW wavefunctions 

The inKP equation has been studied in detail in 1211 (see also [ZO]). A number of different 
classes of solution have been constructed. Here we will only use the simplest one. 

The most general exact solutions of the mKP equation correspond to the kernel Romp of 
the form 
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where f k  and gk are arbitrary functions; these functions for the real V ( c ,  y. I )  satisfy the 
conditions 1221 
- - - - 
f k @ .  A) = f k ( - - h ,  -A), gx(h, K) = gx(-x, -A). 

The corresponding wavefunction QmKp looks like [20, 211 

where 

and 

ig y 4it 
F ( h )  = - + - + - 

A h2 h" 

Using (37) via (32) and (33), one obtains a very general class of exact solutions of the 

Particular choices for the functions fK and gk give rise to particular specialized solutions 

First, let us choose 

?DHD equation. 

of the mKP equation and, consequently, of the ZDHD equation. 

where a k ,  Bk and S, are arbitrary real constants and ak # Bk. The corresponding 
wavefunction *(A) is of the form [20,21] 

For any pure imaginary A such that A # ipk ( k  = 1. , . . , N) formula (39) provides, via (32) 
and (33). exact real solutions of the ZDHD equation. In the simplest case, N = I ,  one has 
(a - f f l i  B = 01) 

x = exp [ 5 (k + $) - ($ + i )  - 2t (f + $)I /cosh [i (i - f) 
- f ($ - + j - 2t ($ - ;) + F ]  



4626 

where the parameters S,  a and ,4 are choosen so that 

eZ := S/(a - p )  =- 0. 

V G Dubrovsky and B G Konopelchenko 

In particular if CY = -,4 formulae (41) give 

It should be emphasized that formula (42) gives us the explicit (but stationary) solution of 
the PDHD equation. 

The 3 data RrKP of the form (38) but with BK = uk(k = 1, . , , , N )  generatc the plane 
rational solutions of the mKP equation [20,21]. The corresponding wavefunction is 

where 

So for any pure imaginary h such that 1 # iffk (k = 1,. . . , N) expression (43) provides 
us, via (?2) and (33), with the real exact solutions of the PDHE equation. In particular, at 
N = 1 one has 

u ( x , y , t )  = (E) -./ - - - -+ - 
01 2y ff 12t ff2 “I  2 

x = e x p  ----- “)/[ 4 2y 12r + -  “1 (: ,i a3 ff ffz 2 (45) 

Finally let us consider the kernel RFKP which is more general than (38) and which 
corresponds to rational solutions of MKP equation, This kernel has the form 1211 

where Ax are arbitrary complex ConstaOtS and &(A’, I )  are arbitrary complex functions. The 
corresponding real wavefunction of mKP equation in the simplest case of one term in the 
sum (46) may be choosen, for example, in the form 
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where S and A1 are arbitrary complex parameters and 

In the last formula yL, = y_jy; by definition. 
Let us note that the choice of wavefunction YdP in the form (47) is possible because 

the equation for the function x = e-F(h)Y for the real V ( t ,  y. t )  due to (23) admits the 
involution ~ ( - 5 ; )  = ~ ( h ) .  For any complex A such that A # A I ,  A # -G formula (47) 
provides, via (32) and (33), the exact real solution of the 2DHD equation. 

In a similar manner one can find the exact solutions of the 2DHD equation in parametrized 
form which are associated with breather-type and other solutions of the mKP equation 
[20,21]. 

- 

6. Conclusion 

The results obtained in this paper can be easily extended to the whole 2DHD hierarchy. The 
2DHD hierarchy can be constructed by 3-dressing via 3 problem (3) with 3 data (16) with 

where x1 = x ,  x z  = y ,  . . .. Formula (16) is valid for the whole hierarchy together with the 
higher analogues of equation (17). Equation (21) is also true for all the hierarchy. 

Finally the interrelation between the ZDHD hierarchy and the mKP hierarchy is given by 
the formulae (27)-(29). The analogue of the formulae (32) and (33) for the whole hierarchy 
looks like 

U ( X 1 , .  . . , x,) = a Y m / a t l  

XI = Vm({i, tz,.  . .) xi: = & k = 2 ,3 ,  

where YmKP is the common wavefunction for the whole mKP hierarchy and (1, e?, . . . are 
independent variables for the m w  hierarchy. 

In a similar manner one can analyse the (1 + 1)-dimensional HD equation and its 
connection with the mKdV equation within the framework of the %dressing method. 
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